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Plan of the talk

o Random permutations and descents
o Large Deviation Principles.
o Descent statistics.

o Descent statistics for the couple.

o Construction of the probability space.




Random Permutations

We denote by 7, a random uniform permutation in S, the symmetric group
on{1,2,...,n}.
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Random Permutations

We denote by 7, a random uniform permutation in S, the symmetric group
on{1,2,...,n}.

Construction : Let V = (Vq, Va,..., V,) L.1.D. Unif[0,1] r.v.
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Random Permutations

We denote by 7, a random uniform permutation in S, the symmetric group
on{1,2,...,n}.

Construction : Let V = (Vq, Va,..., V,) L.1.D. Unif[0,1] r.v.
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The (total) number of descents in a permutation 7, is given by
n—1
Dy = Dy(7,) = Z]l{ﬂ,,(k+1)<7r"(k)}
k=1
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Theorem: (Tanny '73)
D, is equal in distribution to |S, |, for S, defined as

n—1
Sn=>_ Uk
k=1

where Uy = Unif[0, 1] independent of the others.
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Theorem: (Tanny '73)
D, is equal in distribution to |S,], for S, defined as

n—1
Sn=>_ Uk
k=1

where Uy = Unif[0, 1] independent of the others.

Sketch of proof
Let U = (Uy, Ua, ..., U,) LL.D. Unif[0,1] r.v.
We define V = (V4, Vs, ..., V,) as

Vi={U+ U+ + U} Vie{l,2,...,n},

where {x} = x — | x|, i.e. the fractional part.

Proposition

The collection V is an i.i.d. collection of Unif[0,1] r.v.
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T .
B T

Vs

o V5 will create an ascent = red part = (| Uy + Uz| — |U1| =0)
@ V5 will create a descent = blue part = (|[U; + Uz] — |U1] = 1)
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The random variable S, follows the Irwin-Hall (continuous) distribution.

1
and Var(D,) = nl—; Vn > 2

n—1
E(D,) = 5
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Theorem : LLN (D. Freedman '65)
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Theorem : LLN (D. Freedman '65)

Difficulty : for x € (1/2,1)

P(Dy/n > x) = P(|Sa] > nx) = P(S, > [nx])
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Theorem : LLN (D. Freedman '65)

Difficulty : for x € (1/2,1)

Theorem




Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.

Let D, € L; with mean m, x > m and t > 0.

D,
P (n > x) = P(exp(tD,) > e™)

< exp(—tnx) E(exp(tD,))

Ln(t)

< exp (n (tx - ilog(Ln(t)))>
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Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.

Let D, € L; with mean m, x > m and t > 0.

D,
P (n > x) = P(exp(tD,) > e™)

< exp(—tnx) E(exp(tD,))

Ln(t)

< exp (n (tx - ilog(Ln(t)))>

We define the (asymptotic) log-Laplace transform as

L(t) = lim 1 log(Ln(t))-

n—oo N
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Large deviation principles (LDP)
Main idea : give an adjusted behavior of the probability off the mean.

Let D, € L; with mean m, x > m and t > 0.
Dn tnx
P — > x| = P(exp(tD,) > &™)

exp(—tnx) E(exp(tD,))

Ln(t)

exp (n (tx — ﬁ(t)))

We define the (asymptotic) log-Laplace transform as

IN

IN

L(t) = lim 1 log(Ln(t))-

n—oco n

Since this inequality is valid for all t > 0 we can optimize this w.r.t. t.

8/25
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Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.

Let D, € L; with mean m, x > m and t > 0.

D,
P <n > x) = P(exp(tD,) > e™™)

< exp(—tnx) E(exp(tD,))
—_———
La(t)
< _ _
< g%exp( n  (tx E(t)))
We define the (asymptotic) log-Laplace transform as
o1
£(t) = lim ~log(Ly(1)).

Since this inequality is valid for all t > 0 we can optimize this w.r.t. t.
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Large deviation principles (LDP)
Main idea : give an adjusted behavior of the probability off the mean.

Let D, € L; with mean m, x > m and t > 0.

P (% > x) = Plen(eD) > )
exp(—tnx) E(exp(tD,))

Ln(t)
exp (n sup (tx — ﬁ(t)))

t>0

IN

IN

We define the (asymptotic) log-Laplace transform as

L(t) = lim 1 log(Ln(t))-

n—oco n

Since this inequality is valid for all t > 0 we can optimize this w.r.t. t.
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Large deviation principles (LDP)
Main idea : give an adjusted behavior of the probability off the mean.

Let D, € L; with mean m, x > m and t > 0.

P (% > x) = Plen(eD) > )
exp(—tnx) E(exp(tD,))

Ln(t)
exp (n sup (tx — ﬁ(t)))

t>0

IN

IN

We define the (asymptotic) log-Laplace transform as

L(t) = lim 1 log(Ln(t))-

n—oo N
Since this inequality is valid for all t > 0 we can optimize this w.r.t. t.

We define the rate function as
I(x) = sup(tx — L(t))

t>0
8/25
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Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let D, € L; with mean m, x > m and t > 0.

P (Dn" > X) = P(exp(tD,) > ™)

< exp(—tnx) E(exp(tD,))
Ly(t)
< exp (—nl(x))

We define the (asymptotic) log-Laplace transform as

£(t) = lim 2 log(Lo(t)).

n—oco N

Since this inequality is valid for all t > 0 we can optimize this w.r.t. t.
We define the rate function as

() = sup(tx — £(1))
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P (D” > x) < exp (—nl(x))

n
The idea is to prove that this is “tight” as inequality.
Rough LDP (RLDP) : Determine the power in the optimal exponential speed

lim. % log (IP (LZ > x>> = —I(x)

Sharp LDP (SLDP) : Determine a more adjusted asymptotic behavior, i.e.

P (‘Z > x) ~ c(x, n)exp (—nl(x)) as n— oo

Luis Fredes SLDP for descents 9/25



Theorem : RLDP (Bryc, Minda and Sethuraman '09)

i 2o <]P’ (DT > x)> = —I(x) V¥xe(1/2,1),

n—oo N

where the log-Laplace transform is given by

L(t) = lim llog E (exp (tD,)) | = log <M>
n—oo n N t
Ln(t)
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Recently Bercu, Bonnefont and Richou (BBR) obtained for an specific probability

space that
Dn+1 - Dn = £n+17

where the conditional distribution of £,.1 given F, = o(D1, Da, ..., D,) follows a
B(ps) with
_n—D,
Pn = FEEE 1
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Recently Bercu, Bonnefont and Richou (BBR) obtained for an specific probability

space that
Dn+1 - Dn = £n+17

where the conditional distribution of £,.1 given F, = o(D1, Da, ..., D,) follows a
B(ps) with
_n—D,
Pn = FEEE 1

Then they proved that the following is a Martingale with respect to F,

n—1
M, = D, — .
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Consequences
They derived a LLG, together with :

Theorem : Quadratic Strong Law (BBR '23)
1 KD 1\ 1
nl@om;(T‘z) e

Theorem : Law of Iterated Logarithm (BBR '23)

lim su n 1/2)D"—1‘— L a.s
,,Hoop 2 log log(n) n 2 o

Theorem : Functional CLT (BBR '23)

D 1
ﬁ(L’LﬁtJJ —§,t20>ﬂ>(wt:t20)

where (W; : t > 0) is a real-valued centered Gaussian process starting at the
origin with E(WsW;) = s/(12t?) for all 0 < s < t.
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Theorem : SLDP (BBR '23)
For every x € (1/2,1) one has

P (& S X> _ exp(—n/(x) — {nx}tx) (1 + O(l)),

n oxtV2mn

where t, is the unique solution of L'(t,) = x and o2 = L"(t).
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Theorem : SLDP (BBR '23)
For every x € (1/2,1) one has

P (& S X> _ exp(—n/(x) — {nx}tx) (1 + O(l)),

n oxtV2mn

where t, is the unique solution of L'(t,) = x and o2 = L"(t).

The theorem also holds for y =1 — x in (0,1/2), since by a symmetry argument

P(Dn+1<y)—IP(D">X>
n n
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Collaboration

Recall that 7, is a uniform r.v. in S,. We define the descents of the inverse as

Dr/7 = Dn(ﬂ';l)
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Collaboration

Recall that 7, is a uniform r.v. in S,. We define the descents of the inverse as
Dr/7 = Dn(ﬂ';l)

Obviously D/ has the same distribution as D,,.
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Collaboration

Recall that 7, is a uniform r.v. in S,. We define the descents of the inverse as
Dr/7 = Dn(ﬂ';l)
Obviously D/ has the same distribution as D,,.

What about the behavior of (D,, D/)?
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Collaboration

Recall that 7, is a uniform r.v. in S,. We define the descents of the inverse as
D, = Dn(ﬂ';l)
Obviously D/ has the same distribution as D,,.
What about the behavior of (D,, D/)?

Cov(D,,D)) = (n—1)/2n

Theorem : Joint CLT(Vatutin '96)

We construct a probability space which let us obtain.
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Consequences

Theorem : Quadratic Strong Law (BBFR '24)
1 §~(De 1D 1\ o P
M oe () ;<<7 "2k 5) =T as
Theorem : Law of Iterated Logarithm (BBFR '24)
i n 1/2‘< D, 1D, 1 >‘_||u\|
pliag 2 log log(n) 2 2)Y T A a5

BBFR '24)

D 1 Df 1
(2512 2) 20) .10

where (W, : t > 0) is a two dimensional centered Gaussian process starting at the
origin with

§

A,

Theorem : Functional CLT

—~

s 1 0
E(WSWtT):m<O 1) V0 < s <t
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Theorem : SLDP (BBFR '24)
For every x,y € (1/2,1) it holds that
D, D!
P(n—l >X’n—l >y>

_ ep(=n(l(x) + 1)) — {nx}t. — {ny}t, 5., /2)
oxtcoy,t,2mn

(1+0(1)),

where t, is the unique solution of L/(t,) = x and 02 = L"(t).
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Theorem : SLDP (BBFR '24)
For every x,y € (1/2,1) it holds that
D, D;
P(n—l <1_X’n—1 <1—y>

_ ep(=n(l(x) + 1)) = {nx}t — {ny}t, 5., /2)
oxtcoy,t,2mn

(1+0(1)),

where t, is the unique solution of L/(t,) = x and 02 = L"(t).

The sequence (D,/n, D} /n) satisfies an RLDP with rate function given by
1(x,y) = 1(x) + I(y)
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Theorem : SLDP (BBFR '24)
For every x,y € (1/2,1) it holds that

D, D,
P(n—l <1—x,n_1 >y>
_ exp(=n(l(x) +1(y)) = {nx}tc — {ny}ty — t:t,/2)
oxtcoy,t,2mn

(1+0(1)),

where t, is the unique solution of L/(t,) = x and 02 = L"(t).

The sequence (D,/n, D} /n) satisfies an RLDP with rate function given by
1(x,y) = 1(x) + I(y)
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Theorem : SLDP (BBR '23)
For every x € (1/2,1) one has

P (% > x) = eXp(_;igz/;r_{n""}tX) (1+o(1)),

where t, is the unique solution of L'(t,) = x and 02 = L"(t,)
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Theorem : SLDP (BBFR '24)

For every x € (1/2,1) and any p > 1 there exists a sequence d, 1(x), ..., dn p(x)
such that for n large enough one has

p (25 ) - 20l=nl)— (ne) <1 +Z i) oL )> |

where t, is the unique solution of L'(t,) = x and 02 = L"(t,); and where the
coefficients dp 1(x), ..., dn p(x) can be explicitly computed.
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Theorem : SLDP (BBFR '24)

For every x € (1/2,1) and any p > 1 there exists a sequence d, 1(x), ..., dn p(x)
such that for n large enough one has

P(g >X> _ e ax(&)%{nnx}rx) (HZ () ( ))

where t, is the unique solution of L'(t,) = x and 02 = L”(t,); and where the
coefficients dp 1(x), ..., dn p(x) can be explicitly computed

For example

dn,l(x)zl(“‘ 56 _ 651 {nx}_{nx}es_{nx}z)

802 240} 2t 2 ty 602 2

where (3 = LO)(t,) and £y = L®)(¢,).
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Construction of the probability space

Recursive construction: We construct 7,1 from 7, as follows.

4/5 |- 5/6
35 [ria
— 36
2/5 |- PO : "
1/5 "
0 0 1/6 2/6 3/6 4/6 5/6
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Construction of the probability space

Recursive construction: We construct 7,1 from 7, as follows.

5/6
4/6]..-
3/6
2/6

1/6

0 1)6 2A/6 3A/6 4/6 5/6

From this representation we can study the number of cells C(/,j) that generate
prescribed increments AD, 1 = a and AD; ; = b, for a, b € {0,1} in the
permutation 7, and 7,1 when U, € C(i,J).

18 /25
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Define for a, b € {0, 1}, the number of cells with prescribed increments for the
permutation and its inverse

Ca,b = Cap(mn) = {C(i,j) : ADny1(i,j) = a, AD; (i, j) = b}

Theorem (BBFR '24)

Every permutation m,, out of its (n+ 1)? cells, has exactly

ca1=(n—D,)(n—D;)+n
co=(n—D,)(D,+1)—n
c1=(D,+1)(n—D))—n
c,0=(Dn+1)(D,+1)+n

(1)
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4/5

3/5

2/5

15 oo RS O
: (1,4}

0 15 25 35 45

Lemma (BBFR '24)

For each ¢ € {1,2,...,n+ 1} the fiber F(¢) has exactly

{i: ADp1(i,¢) =1} =n—D, and
[{i: ADp1(i,0) = 0} = D, + 1
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Sketch of proof :

Figure: We color yellow the cells to the “up-left” of each point and blue the cells to the
“low-right” of each point.

Properties:

@ Each point induces one yellow or a blue cell for each fiber.
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Sketch of proof :

] fr— —
' ' ' ' '
' ' ' ' 1
' ' ' ' 1
et ] r==- ® -y
' ' ' 0 '
' ' ' 0 '
1 ' 1 t '
---e r---9 [
' ' ' 0 '
' ' ' [ '
' ' ' 0 1
et re==-
' ' '
' ' '
' ' '
B .
'
'
'

Figure: We color yellow the cells to the “up-left” of each point and blue the cells to the
“low-right” of each point.

Properties:
@ Each point induces one yellow or a blue cell for each fiber.

@ Reading vertical fibers there are four cases to have increment +1 :

Left) if yellow
Right) if blue
Interior) two cases depending if there is descent on 7,:

Ascent) if exclusively yellow or blue.
Descent) if yellow and blue.
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Y(1,0)+ B(n+1,¢)+ E (Y(i,0)+ B(i,0)) + E (Y(i,0)+ B(i,¢) - 1)
ie{2,..., n} ie{2,..., n}
ma(i—1)<mn(i) o (i=1)>my(i)

_Z i,0)+B(i+1,0)—

:n_Dm

Corollary (BBFR '24)

For every 7,, out of the (n + 1) cells, there are exactly (n+ 1)(n — D,) with
increment +1.
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Sketch of proof of the Theorem

Claim: It is enough to prove that ¢; 1 = (n— D,)(n — D}) + n.
Proof of claim: We recover ¢y from ¢ 1.

From 7, we construct 7,(i) = n — m,(i).

This exchanges descents with ascents for 7, and 7, 1.

Ascents + Descents = n — 1.

Co’o(’/'rn) = c1’1(7_r,,) = (Dn —+ 1)(D,’1 -+ 1) + n.
For ¢1,0 from ¢; 1, thanks to the previous Corollary one has that
aotai=(n-D,)(n+1) = co=(n—D,)(D,+1)—n.

Similarly for cp 1.

Luis Fredes SLDP for descents 23/25



Proof for c; ; : Induction.

n = 1 identity, easy to check.

Inductive step : we consider m,,1 a permutation of size n+ 1 and we induce a
permutation 7, of size n as follows

Figure: Permutation 7, = (213) (to the right) induced for n+ 1 = 4 from 7,1 = (2143)
(to the left) when taking out mny1(n+ 1) = 3. We keep track of the increment behavior
of the red cell during the induction.

The increments in the gray region remain invariant!
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Depending on the behavior of (AD,1(C*), AD} ;(C*)) we have four cases.

We illustrate with one case : if it is equal to (0,1), we have

Figure: The blue cells are cells with AD,1 = 1 and the red cells are cells with
AD,/H,]. = 1

To conclude we apply to the fiber of 7,1 the previous Lemma, i.e. rightmost fiber
in the left image, has

{C(n+1,j): AD; 1, (n+1,j) =1} =n—-D,
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