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Plan of the talk

Random permutations and descents
Large Deviation Principles.
Descent statistics.
Descent statistics for the couple.
Construction of the probability space.
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Random Permutations
We denote by πn a random uniform permutation in Sn the symmetric group
on {1, 2, . . . , n}.

Construction : Let V = (V1,V2, . . . ,Vn) I.I.D. Unif[0, 1] r.v.
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The (total) number of descents in a permutation πn is given by

Dn = Dn(πn) =
n−1∑
k=1

1{πn(k+1)<πn(k)}
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Theorem: (Tanny ’73)
Dn is equal in distribution to ⌊Sn⌋, for Sn defined as

Sn =
n−1∑
k=1

Uk ,

where Uk = Unif[0, 1] independent of the others.

Sketch of proof
Let U = (U1,U2, . . . ,Un) I.I.D. Unif[0, 1] r.v.
We define V = (V1,V2, . . . ,Vn) as

Vi = {U1 + U2 + · · ·+ Ui} ∀i ∈ {1, 2, . . . , n},

where {x} = x − ⌊x⌋, i.e. the fractional part.

Proposition
The collection V is an i.i.d. collection of Unif[0, 1] r.v.
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0

1

V1

V2 will create an ascent = red part = (⌊U1 + U2⌋ − ⌊U1⌋ = 0)
V2 will create a descent = blue part = (⌊U1 + U2⌋ − ⌊U1⌋ = 1)

Luis Fredes SLDP for descents 5 / 25



The random variable Sn follows the Irwin-Hall (continuous) distribution.

Corollary

E(Dn) =
n − 1

2
and Var(Dn) =

n + 1
12

∀n ≥ 2
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Theorem : LLN (D. Freedman ’65)

lim
n→∞

Dn

n
=

1
2

a.s.

Difficulty : for x ∈ (1/2, 1)

P (Dn/n > x) = P(⌊Sn⌋ > nx) = P(Sn > ⌈nx⌉)

Theorem : CLT (David & Barton ’62, Harper ’67, Bender ’73, +...)
√
n

(
Dn

n
− 1

2

)
(d)−−→ N

(
0,

1
12

)
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Large deviation principles (LDP)
Main idea : give an adjusted behavior of the probability off the mean.

Let Dn ∈ L1 with mean m, x > m and t ≥ 0.

P
(
Dn

n
> x

)
= P(exp(tDn) > etnx)

≤ exp(−tnx)E(exp(tDn))︸ ︷︷ ︸
Ln(t)

≤

inf
t>0

exp

(
−n

sup
t>0

(
tx − 1

n
log(Ln(t))

))

We define the (asymptotic) log-Laplace transform as

L(t) = lim
n→∞

1
n
log(Ln(t)).

Since this inequality is valid for all t > 0 we can optimize this w.r.t. t.
We define the rate function as

I (x) = sup
t>0

(tx − L(t))
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P
(
Dn

n
> x

)
≤ exp (−nI (x))

The idea is to prove that this is “tight” as inequality.

Rough LDP (RLDP) : Determine the power in the optimal exponential speed

lim
n→∞

1
n
log

(
P
(
Dn

n
> x

))
= −I (x)

Sharp LDP (SLDP) : Determine a more adjusted asymptotic behavior, i.e.

P
(
Dn

n
> x

)
≈ c(x , n) exp (−nI (x)) as n → ∞
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Theorem : RLDP (Bryc, Minda and Sethuraman ’09)

lim
n→∞

1
n
log

(
P
(
Dn

n
> x

))
= −I (x) ∀x ∈ (1/2, 1),

where the log-Laplace transform is given by

L(t) = lim
n→∞

1
n
log

E (exp (tDn))︸ ︷︷ ︸
Ln(t)

 = log

(
exp(t)− 1

t

)
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Recently Bercu, Bonnefont and Richou (BBR) obtained for an specific probability
space that

Dn+1 − Dn = ξn+1,

where the conditional distribution of ξn+1 given Fn = σ(D1,D2, . . . ,Dn) follows a
B(pn) with

pn =
n − Dn

n + 1
.

Then they proved that the following is a Martingale with respect to Fn

Mn = n

(
Dn −

n − 1
2

)
.
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Consequences
They derived a LLG, together with :

Theorem : Quadratic Strong Law (BBR ’23)

lim
n→∞

1
log(n)

n∑
k=1

(
Dk

k
− 1

2

)2

=
1
12

a.s.

Theorem : Law of Iterated Logarithm (BBR ’23)

lim sup
n→∞

(
n

2 log log(n)

)1/2 ∣∣∣Dn

n
− 1

2

∣∣∣ = 1√
12

a.s.

Theorem : Functional CLT (BBR ’23)
√
n

(
D⌊nt⌋

⌊nt⌋
− 1

2
, t ≥ 0

)
(d)−−→ (Wt : t ≥ 0)

where (Wt : t ≥ 0) is a real-valued centered Gaussian process starting at the
origin with E(WsWt) = s/(12t2) for all 0 < s ≤ t.
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Theorem : SLDP (BBR ’23)
For every x ∈ (1/2, 1) one has

P
(
Dn

n
> x

)
=

exp(−nI (x)− {nx}tx)
σx tx

√
2πn

(1 + o(1)) ,

where tx is the unique solution of L′(tx) = x and σ2
x = L′′(tx).

The theorem also holds for y = 1 − x in (0, 1/2), since by a symmetry argument

P
(
Dn + 1

n
< y

)
= P

(
Dn

n
> x

)
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Collaboration

Recall that πn is a uniform r.v. in Sn. We define the descents of the inverse as

D ′
n = Dn(π

−1
n )

Obviously D ′
n has the same distribution as Dn.

What about the behavior of (Dn,D
′
n)?

Cov(Dn,D
′
n) = (n − 1)/2n

Theorem : Joint CLT(Vatutin ’96)
√
n

(
Dn

n
− 1

2
,
D ′

n

n
− 1

2

)
(d)−−→ N

(
0⃗,

1
12

Id2

)
We construct a probability space which let us obtain.
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Consequences

Theorem : Quadratic Strong Law (BBFR ’24)

lim
n→∞

1
log(n)

n∑
k=1

⟨
(
Dk

k
− 1

2
,
D ′

k

k
− 1

2

)
, u⟩2 =

∥u∥2

12
a.s.

Theorem : Law of Iterated Logarithm (BBFR ’24)

lim sup
n→∞

(
n

2 log log(n)

)1/2 ∣∣∣⟨(Dn

n
− 1

2
,
D ′

n

n
− 1

2

)
, u⟩
∣∣∣ = ∥u∥√

12
a.s.

Theorem : Functional CLT (BBFR ’24)

√
n

((
D⌊nt⌋

⌊nt⌋
− 1

2
,
D ′

⌊nt⌋

⌊nt⌋
− 1

2

)
, t ≥ 0

)
(d)−−→ (Wt : t ≥ 0)

where (Wt : t ≥ 0) is a two dimensional centered Gaussian process starting at the
origin with

E(WsW
T
t ) =

s

12t2

(
1 0
0 1

)
∀0 < s ≤ t.
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Theorem : SLDP (BBFR ’24)
For every x , y ∈ (1/2, 1) it holds that

P
(

Dn

n − 1
> x ,

D ′
n

n − 1
> y

)
=

exp(−n(I (x) + I (y))− {nx}tx − {ny}ty+tx ty/2)
σx txσy ty2πn

(1 + o(1)) ,

where tx is the unique solution of L′(tx) = x and σ2
x = L′′(tx).

Corollary
The sequence (Dn/n,D

′
n/n) satisfies an RLDP with rate function given by

I (x , y) = I (x) + I (y).
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Theorem : SLDP (BBFR ’24)
For every x ∈ (1/2, 1) and any p ≥ 1 there exists a sequence dn,1(x), . . . , dn,p(x)
such that for n large enough one has

P
(
Dn

n
> x

)
=

exp(−nI (x)− {nx}tx)
σx tx

√
2πn

(
1 +

p∑
k=1

dn,k(x)

nk
+ o

(
1

np+1

))
,

where tx is the unique solution of L′(tx) = x and σ2
x = L′′(tx); and where the

coefficients dn,1(x), . . . , dn,p(x) can be explicitly computed.
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+ o

(
1

np+1

))
,

where tx is the unique solution of L′(tx) = x and σ2
x = L′′(tx); and where the

coefficients dn,1(x), . . . , dn,p(x) can be explicitly computed.

For example

dn,1(x) =
1
σ2
x

(
ℓ4

8σ2
x

− 5ℓ23
24σ4

x

− ℓ3
2txσ2

x

− 1
t2x

− {nx}
tx

− {nx}ℓ3
6σ2

x

− {nx}2

2

)
where ℓ3 = L(3)(tx) and ℓ4 = L(4)(tx).
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Construction of the probability space

Recursive construction: We construct πn+1 from πn as follows.

0

4/5

3/5

2/5

1/5

1/5 2/5 3/5 4/5
0 1/6 2/6 3/6 4/6 5/6

4/6

3/6

2/6

1/6

5/6

C(1, 4)

From this representation we can study the number of cells C(i , j) that generate
prescribed increments ∆Dn+1 = a and ∆D ′

n+1 = b, for a, b ∈ {0, 1} in the
permutation πn and π−1

n when Un+1 ∈ C(i , j).
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Define for a, b ∈ {0, 1}, the number of cells with prescribed increments for the
permutation and its inverse

ca,b := ca,b(πn) = |{C(i , j) : ∆Dn+1(i , j) = a,∆D ′
n+1(i , j) = b}| (1)

Theorem (BBFR ’24)
Every permutation πn, out of its (n + 1)2 cells, has exactly

c1,1 = (n − Dn)(n − D ′
n) + n

c1,0 = (n − Dn)(D
′
n + 1)− n

c0,1 = (Dn + 1)(n − D ′
n)− n

c0,0 = (Dn + 1)(D ′
n + 1) + n
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We define the fiber of height ℓ the set F(ℓ) = ∪n+1
i=1 C (i , ℓ).

0

4/5

3/5

2/5

1/5

1/5 2/5 3/5 4/5

C(1, 4)

F(4)

Lemma (BBFR ’24)
For each ℓ ∈ {1, 2, . . . , n + 1} the fiber F(ℓ) has exactly

|{i : ∆Dn+1(i , ℓ) = 1}| = n − Dn and
|{i : ∆Dn+1(i , ℓ) = 0}| = Dn + 1
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Sketch of proof :

Figure: We color yellow the cells to the “up-left” of each point and blue the cells to the
“low-right” of each point.

Properties:
1 Each point induces one yellow or a blue cell for each fiber.
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Sketch of proof :

Figure: We color yellow the cells to the “up-left” of each point and blue the cells to the
“low-right” of each point.

Properties:
1 Each point induces one yellow or a blue cell for each fiber.
2 Reading vertical fibers there are four cases to have increment +1 :

Left) if yellow
Right) if blue

Interior) two cases depending if there is descent on πn:
Ascent) if exclusively yellow or blue.

Descent) if yellow and blue.
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Y (1, ℓ) + B(n + 1, ℓ) +
∑

i∈{2,...,n}
πn(i−1)<πn(i)

(Y (i , ℓ) + B(i , ℓ)) +
∑

i∈{2,...,n}
πn(i−1)>πn(i)

(Y (i , ℓ) + B(i , ℓ)− 1)

=
n∑

i=1

(Y (i , ℓ) + B(i + 1, ℓ))− Dn

= n − Dn,

Corollary (BBFR ’24)
For every πn, out of the (n + 1)2 cells, there are exactly (n + 1)(n − Dn) with
increment +1.
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Sketch of proof of the Theorem

Claim: It is enough to prove that c1,1 = (n − Dn)(n − D ′
n) + n.

Proof of claim: We recover c0,0 from c1,1.
From πn we construct πn(i) = n − πn(i).
This exchanges descents with ascents for πn and π−1

n .
Ascents + Descents = n − 1.

c0,0(πn) = c1,1(π̄n) = (Dn + 1)(D ′
n + 1) + n.

For c1,0 from c1,1, thanks to the previous Corollary one has that

c1,0 + c1,1 = (n − Dn)(n + 1) =⇒ c1,0 = (n − Dn)(D
′
n + 1)− n.

Similarly for c0,1.
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Proof for c1,1 : Induction.
n = 1 identity, easy to check.
Inductive step : we consider πn+1 a permutation of size n + 1 and we induce a
permutation πn of size n as follows

C∗

Figure: Permutation πn = (213) (to the right) induced for n+ 1 = 4 from πn+1 = (2143)
(to the left) when taking out πn+1(n + 1) = 3. We keep track of the increment behavior
of the red cell during the induction.
The increments in the gray region remain invariant!
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Depending on the behavior of (∆Dn+1(C
∗),∆D ′

n+1(C
∗)) we have four cases.

We illustrate with one case : if it is equal to (0, 1), we have

Figure: The blue cells are cells with ∆Dn+1 = 1 and the red cells are cells with
∆D ′

n+1 = 1.

To conclude we apply to the fiber of π−1
n the previous Lemma, i.e. rightmost fiber

in the left image, has

|{C(n + 1, j) : ∆D ′
n+1(n + 1, j) = 1}| = n − D ′

n
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