Sharp large deviation principles for descents of random permutations

Luis Fredes
(Work with B. Bercu, M. Bonnefont and A. Richou)

Seminario de Probabilidades de Chile

- Random permutations and descents
- Large Deviation Principles.
- Descent statistics.
- Descent statistics for the couple.
- Construction of the probability space.

Random Permutations

We denote by π_{n} a random uniform permutation in S_{n} the symmetric group on $\{1,2, \ldots, n\}$.

Random Permutations

We denote by π_{n} a random uniform permutation in S_{n} the symmetric group on $\{1,2, \ldots, n\}$.

Construction: Let $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ I.I.D. Unif[0, 1] r.v.

Random Permutations

We denote by π_{n} a random uniform permutation in S_{n} the symmetric group on $\{1,2, \ldots, n\}$.

Construction: Let $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ I.I.D. Unif[0, 1] r.v.

The (total) number of descents in a permutation π_{n} is given by

$$
D_{n}=D_{n}\left(\pi_{n}\right)=\sum_{k=1}^{n-1} \mathbb{1}_{\left\{\pi_{n}(k+1)<\pi_{n}(k)\right\}}
$$

Theorem: (Tanny '73)

D_{n} is equal in distribution to $\left\lfloor S_{n}\right\rfloor$, for S_{n} defined as

$$
S_{n}=\sum_{k=1}^{n-1} U_{k},
$$

where $U_{k}=\operatorname{Unif}[0,1]$ independent of the others.

Theorem: (Tanny '73)

D_{n} is equal in distribution to $\left\lfloor S_{n}\right\rfloor$, for S_{n} defined as

$$
S_{n}=\sum_{k=1}^{n-1} U_{k},
$$

where $U_{k}=\operatorname{Unif}[0,1]$ independent of the others.
Sketch of proof
Let $\mathcal{U}=\left(U_{1}, U_{2}, \ldots, U_{n}\right)$ I.I.D. Unif[0, 1] r.v.
We define $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ as

$$
V_{i}=\left\{U_{1}+U_{2}+\cdots+U_{i}\right\} \quad \forall i \in\{1,2, \ldots, n\},
$$

where $\{x\}=x-\lfloor x\rfloor$, i.e. the fractional part.

Proposition

The collection \mathcal{V} is an i.i.d. collection of Unif[0, 1] r.v.

- V_{2} will create an ascent $=$ red part $=\left(\left\lfloor U_{1}+U_{2}\right\rfloor-\left\lfloor U_{1}\right\rfloor=0\right)$
- V_{2} will create a descent $=$ blue part $=\left(\left\lfloor U_{1}+U_{2}\right\rfloor-\left\lfloor U_{1}\right\rfloor=1\right)$

The random variable S_{n} follows the Irwin-Hall (continuous) distribution.
Corollary

$$
\mathbb{E}\left(D_{n}\right)=\frac{n-1}{2} \quad \text { and } \quad \mathbb{V a r}\left(D_{n}\right)=\frac{n+1}{12} \quad \forall n \geq 2
$$

Theorem : LLN (D. Freedman '65)

$$
\lim _{n \rightarrow \infty} \frac{D_{n}}{n}=\frac{1}{2} \quad \text { a.s. }
$$

Theorem : LLN (D. Freedman '65)

$$
\lim _{n \rightarrow \infty} \frac{D_{n}}{n}=\frac{1}{2} \quad \text { a.s. }
$$

Difficulty : for $x \in(1 / 2,1)$

$$
\mathbb{P}\left(D_{n} / n>x\right)=\mathbb{P}\left(\left\lfloor S_{n}\right\rfloor>n x\right)=\mathbb{P}\left(S_{n}>\lceil n x\rceil\right)
$$

Theorem : LLN (D. Freedman '65)

$$
\lim _{n \rightarrow \infty} \frac{D_{n}}{n}=\frac{1}{2} \quad \text { a.s. }
$$

Difficulty : for $x \in(1 / 2,1)$

$$
\mathbb{P}\left(D_{n} / n>x\right)=\mathbb{P}\left(\left\lfloor S_{n}\right\rfloor>n x\right)=\mathbb{P}\left(S_{n}>\lceil n x\rceil\right)
$$

Theorem : CLT (David \& Barton '62, Harper '67, Bender '73, +...)

$$
\sqrt{n}\left(\frac{D_{n}}{n}-\frac{1}{2}\right) \xrightarrow{(d)} \mathcal{N}\left(0, \frac{1}{12}\right)
$$

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-t n x) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \exp \left(-n \quad\left(t x-\frac{1}{n} \log \left(L_{n}(t)\right)\right)\right)
\end{aligned}
$$

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-t n x) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \quad \exp \left(-n \quad\left(t x-\frac{1}{n} \log \left(L_{n}(t)\right)\right)\right)
\end{aligned}
$$

We define the (asymptotic) log-Laplace transform as

$$
\mathcal{L}(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L_{n}(t)\right)
$$

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-t n x) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \exp (-n \quad(t x-\mathcal{L}(t)))
\end{aligned}
$$

We define the (asymptotic) log-Laplace transform as

$$
\mathcal{L}(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L_{n}(t)\right)
$$

Since this inequality is valid for all $t>0$ we can optimize this w.r.t. t.

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-t n x) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \inf _{t>0} \exp (-n \quad(t x-\mathcal{L}(t)))
\end{aligned}
$$

We define the (asymptotic) log-Laplace transform as

$$
\mathcal{L}(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L_{n}(t)\right)
$$

Since this inequality is valid for all $t>0$ we can optimize this w.r.t. t.

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-t n x) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \exp \left(-n \sup _{t>0}(t x-\mathcal{L}(t))\right)
\end{aligned}
$$

We define the (asymptotic) log-Laplace transform as

$$
\mathcal{L}(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L_{n}(t)\right)
$$

Since this inequality is valid for all $t>0$ we can optimize this w.r.t. t.

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-t n x) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \exp \left(-n \sup _{t>0}(t x-\mathcal{L}(t))\right)
\end{aligned}
$$

We define the (asymptotic) log-Laplace transform as

$$
\mathcal{L}(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L_{n}(t)\right)
$$

Since this inequality is valid for all $t>0$ we can optimize this w.r.t. t. We define the rate function as

$$
I(x)=\sup _{t>0}(t x-\mathcal{L}(t))
$$

Large deviation principles (LDP)

Main idea : give an adjusted behavior of the probability off the mean.
Let $D_{n} \in L_{1}$ with mean $m, x>m$ and $t \geq 0$.

$$
\begin{aligned}
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) & =\mathbb{P}\left(\exp \left(t D_{n}\right)>e^{t n x}\right) \\
& \leq \exp (-\operatorname{tnx}) \underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)} \\
& \leq \exp (-n I(x))
\end{aligned}
$$

We define the (asymptotic) log-Laplace transform as

$$
\mathcal{L}(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(L_{n}(t)\right)
$$

Since this inequality is valid for all $t>0$ we can optimize this w.r.t. t. We define the rate function as

$$
I(x)=\sup _{t>0}(t x-\mathcal{L}(t))
$$

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) \leq \exp (-n I(x))
$$

The idea is to prove that this is "tight" as inequality.
Rough LDP (RLDP) : Determine the power in the optimal exponential speed

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathbb{P}\left(\frac{D_{n}}{n}>x\right)\right)=-I(x)
$$

Sharp LDP (SLDP) : Determine a more adjusted asymptotic behavior, i.e.

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right) \approx c(x, n) \exp (-n l(x)) \quad \text { as } n \rightarrow \infty
$$

Theorem : RLDP (Bryc, Minda and Sethuraman '09)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathbb{P}\left(\frac{D_{n}}{n}>x\right)\right)=-I(x) \quad \forall x \in(1 / 2,1)
$$

where the \log-Laplace transform is given by

$$
L(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log (\underbrace{\mathbb{E}\left(\exp \left(t D_{n}\right)\right)}_{L_{n}(t)})=\log \left(\frac{\exp (t)-1}{t}\right)
$$

Recently Bercu, Bonnefont and Richou (BBR) obtained for an specific probability space that

$$
D_{n+1}-D_{n}=\xi_{n+1},
$$

where the conditional distribution of ξ_{n+1} given $\mathcal{F}_{n}=\sigma\left(D_{1}, D_{2}, \ldots, D_{n}\right)$ follows a $\mathcal{B}\left(p_{n}\right)$ with

$$
p_{n}=\frac{n-D_{n}}{n+1} .
$$

Recently Bercu, Bonnefont and Richou (BBR) obtained for an specific probability space that

$$
D_{n+1}-D_{n}=\xi_{n+1},
$$

where the conditional distribution of ξ_{n+1} given $\mathcal{F}_{n}=\sigma\left(D_{1}, D_{2}, \ldots, D_{n}\right)$ follows a $\mathcal{B}\left(p_{n}\right)$ with

$$
p_{n}=\frac{n-D_{n}}{n+1} .
$$

Then they proved that the following is a Martingale with respect to \mathcal{F}_{n}

$$
M_{n}=n\left(D_{n}-\frac{n-1}{2}\right) .
$$

Consequences

They derived a LLG, together with :

Theorem : Quadratic Strong Law (BBR '23)

$$
\lim _{n \rightarrow \infty} \frac{1}{\log (n)} \sum_{k=1}^{n}\left(\frac{D_{k}}{k}-\frac{1}{2}\right)^{2}=\frac{1}{12} \quad \text { a.s. }
$$

Theorem : Law of Iterated Logarithm (BBR '23)

$$
\limsup _{n \rightarrow \infty}\left(\frac{n}{2 \log \log (n)}\right)^{1 / 2}\left|\frac{D_{n}}{n}-\frac{1}{2}\right|=\frac{1}{\sqrt{12}} \quad \text { a.s. }
$$

Theorem : Functional CLT (BBR '23)

$$
\sqrt{n}\left(\frac{D_{\lfloor n t\rfloor}}{\lfloor n t\rfloor}-\frac{1}{2}, t \geq 0\right) \xrightarrow{(d)}\left(W_{t}: t \geq 0\right)
$$

where $\left(W_{t}: t \geq 0\right)$ is a real-valued centered Gaussian process starting at the origin with $\mathbb{E}\left(W_{s} W_{t}\right)=s /\left(12 t^{2}\right)$ for all $0<s \leq t$.

Theorem : SLDP (BBR '23)

For every $x \in(1 / 2,1)$ one has

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right)=\frac{\exp \left(-n I(x)-\{n x\} t_{x}\right)}{\sigma_{x} t_{x} \sqrt{2 \pi n}}(1+o(1)),
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$.

Theorem : SLDP (BBR '23)

For every $x \in(1 / 2,1)$ one has

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right)=\frac{\exp \left(-n I(x)-\{n x\} t_{x}\right)}{\sigma_{x} t_{x} \sqrt{2 \pi n}}(1+o(1))
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$.
The theorem also holds for $y=1-x$ in $(0,1 / 2)$, since by a symmetry argument

$$
\mathbb{P}\left(\frac{D_{n}+1}{n}<y\right)=\mathbb{P}\left(\frac{D_{n}}{n}>x\right)
$$

Collaboration

Recall that π_{n} is a uniform r.v. in S_{n}. We define the descents of the inverse as

$$
D_{n}^{\prime}=D_{n}\left(\pi_{n}^{-1}\right)
$$

Collaboration

Recall that π_{n} is a uniform r.v. in S_{n}. We define the descents of the inverse as

$$
D_{n}^{\prime}=D_{n}\left(\pi_{n}^{-1}\right)
$$

Obviously D_{n}^{\prime} has the same distribution as D_{n}.

Collaboration

Recall that π_{n} is a uniform r.v. in S_{n}. We define the descents of the inverse as

$$
D_{n}^{\prime}=D_{n}\left(\pi_{n}^{-1}\right)
$$

Obviously D_{n}^{\prime} has the same distribution as D_{n}.
What about the behavior of $\left(D_{n}, D_{n}^{\prime}\right)$?

Collaboration

Recall that π_{n} is a uniform r.v. in S_{n}. We define the descents of the inverse as

$$
D_{n}^{\prime}=D_{n}\left(\pi_{n}^{-1}\right)
$$

Obviously D_{n}^{\prime} has the same distribution as D_{n}.
What about the behavior of $\left(D_{n}, D_{n}^{\prime}\right)$?

$$
\operatorname{Cov}\left(D_{n}, D_{n}^{\prime}\right)=(n-1) / 2 n
$$

Theorem : Joint CLT(Vatutin '96)

$$
\sqrt{n}\left(\frac{D_{n}}{n}-\frac{1}{2}, \frac{D_{n}^{\prime}}{n}-\frac{1}{2}\right) \xrightarrow{(d)} \mathcal{N}\left(\overrightarrow{0}, \frac{1}{12} \mathrm{Id}_{2}\right)
$$

We construct a probability space which let us obtain.

Consequences

Theorem : Quadratic Strong Law (BBFR '24)

$$
\lim _{n \rightarrow \infty} \frac{1}{\log (n)} \sum_{k=1}^{n}\left\langle\left(\frac{D_{k}}{k}-\frac{1}{2}, \frac{D_{k}^{\prime}}{k}-\frac{1}{2}\right), u\right\rangle^{2}=\frac{\|u\|^{2}}{12} \quad \text { a.s. }
$$

Theorem : Law of Iterated Logarithm (BBFR '24)

$$
\limsup _{n \rightarrow \infty}\left(\frac{n}{2 \log \log (n)}\right)^{1 / 2}\left|\left\langle\left(\frac{D_{n}}{n}-\frac{1}{2}, \frac{D_{n}^{\prime}}{n}-\frac{1}{2}\right), u\right\rangle\right|=\frac{\|u\|}{\sqrt{12}} \quad \text { a.s. }
$$

Theorem : Functional CLT (BBFR '24)

$$
\sqrt{n}\left(\left(\frac{D_{\lfloor n t\rfloor}\lfloor n t\rfloor}{\left\lfloor\frac{1}{2}\right.}, \frac{D_{\lfloor n t\rfloor}^{\prime}}{\lfloor n t\rfloor}-\frac{1}{2}\right), t \geq 0\right) \xrightarrow{(d)}\left(W_{t}: t \geq 0\right)
$$

where $\left(W_{t}: t \geq 0\right)$ is a two dimensional centered Gaussian process starting at the origin with

$$
\mathbb{E}\left(W_{s} W_{t}^{T}\right)=\frac{s}{12 t^{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \forall 0<s \leq t .
$$

Theorem : SLDP (BBFR '24)

For every $x, y \in(1 / 2,1)$ it holds that

$$
\begin{aligned}
& \mathbb{P}\left(\frac{D_{n}}{n-1}>x, \frac{D_{n}^{\prime}}{n-1}>y\right) \\
& =\frac{\exp \left(-n(I(x)+I(y))-\{n x\} t_{x}-\{n y\} t_{y}+t_{x} t_{y} / 2\right)}{\sigma_{x} t_{x} \sigma_{y} t_{y} 2 \pi n}(1+o(1)),
\end{aligned}
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$.

Theorem : SLDP (BBFR '24)

For every $x, y \in(1 / 2,1)$ it holds that

$$
\begin{aligned}
& \mathbb{P}\left(\frac{D_{n}}{n-1}<1-x, \frac{D_{n}^{\prime}}{n-1}<1-y\right) \\
& =\frac{\exp \left(-n(I(x)+I(y))-\{n x\} t_{x}-\{n y\} t_{y}+t_{x} t_{y} / 2\right)}{\sigma_{x} t_{x} \sigma_{y} t_{y} 2 \pi n}(1+o(1))
\end{aligned}
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$.

Corollary

The sequence ($D_{n} / n, D_{n}^{\prime} / n$) satisfies an RLDP with rate function given by $I(x, y)=I(x)+I(y)$.

Theorem : SLDP (BBFR '24)

For every $x, y \in(1 / 2,1)$ it holds that

$$
\begin{aligned}
& \mathbb{P}\left(\frac{D_{n}}{n-1}<1-x, \frac{D_{n}^{\prime}}{n-1}>y\right) \\
& =\frac{\exp \left(-n(I(x)+I(y))-\{n x\} t_{x}-\{n y\} t_{y}-t_{x} t_{y} / 2\right)}{\sigma_{x} t_{x} \sigma_{y} t_{y} 2 \pi n}(1+o(1)),
\end{aligned}
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$.

Corollary

The sequence ($D_{n} / n, D_{n}^{\prime} / n$) satisfies an RLDP with rate function given by $I(x, y)=I(x)+I(y)$.

Theorem : SLDP (BBR '23)

For every $x \in(1 / 2,1)$ one has

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right)=\frac{\exp \left(-n I(x)-\{n x\} t_{x}\right)}{\sigma_{x} t_{x} \sqrt{2 \pi n}}(1+o(1)),
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$

Theorem : SLDP (BBFR '24)

For every $x \in(1 / 2,1)$ and any $p \geq 1$ there exists a sequence $d_{n, 1}(x), \ldots, d_{n, p}(x)$ such that for n large enough one has

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right)=\frac{\exp \left(-n l(x)-\{n x\} t_{x}\right)}{\sigma_{x} t_{x} \sqrt{2 \pi n}}\left(1+\sum_{k=1}^{p} \frac{d_{n, k}(x)}{n^{k}}+o\left(\frac{1}{n^{p+1}}\right)\right)
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$; and where the coefficients $d_{n, 1}(x), \ldots, d_{n, p}(x)$ can be explicitly computed.

Theorem : SLDP (BBFR '24)

For every $x \in(1 / 2,1)$ and any $p \geq 1$ there exists a sequence $d_{n, 1}(x), \ldots, d_{n, p}(x)$ such that for n large enough one has

$$
\mathbb{P}\left(\frac{D_{n}}{n}>x\right)=\frac{\exp \left(-n l(x)-\{n x\} t_{x}\right)}{\sigma_{x} t_{x} \sqrt{2 \pi n}}\left(1+\sum_{k=1}^{p} \frac{d_{n, k}(x)}{n^{k}}+o\left(\frac{1}{n^{p+1}}\right)\right),
$$

where t_{x} is the unique solution of $L^{\prime}\left(t_{x}\right)=x$ and $\sigma_{x}^{2}=L^{\prime \prime}\left(t_{x}\right)$; and where the coefficients $d_{n, 1}(x), \ldots, d_{n, p}(x)$ can be explicitly computed.

For example

$$
d_{n, 1}(x)=\frac{1}{\sigma_{x}^{2}}\left(\frac{\ell_{4}}{8 \sigma_{x}^{2}}-\frac{5 \ell_{3}^{2}}{24 \sigma_{x}^{4}}-\frac{\ell_{3}}{2 t_{x} \sigma_{x}^{2}}-\frac{1}{t_{x}^{2}}-\frac{\{n x\}}{t_{x}}-\frac{\{n x\} \ell_{3}}{6 \sigma_{x}^{2}}-\frac{\{n x\}^{2}}{2}\right)
$$

where $\ell_{3}=L^{(3)}\left(t_{x}\right)$ and $\ell_{4}=L^{(4)}\left(t_{x}\right)$.

Construction of the probability space

Recursive construction: We construct π_{n+1} from π_{n} as follows.

Construction of the probability space

Recursive construction: We construct π_{n+1} from π_{n} as follows.

From this representation we can study the number of cells $\mathcal{C}(i, j)$ that generate prescribed increments $\Delta D_{n+1}=a$ and $\Delta D_{n+1}^{\prime}=b$, for $a, b \in\{0,1\}$ in the permutation π_{n} and π_{n}^{-1} when $U_{n+1} \in \mathcal{C}(i, j)$.

Define for $a, b \in\{0,1\}$, the number of cells with prescribed increments for the permutation and its inverse

$$
\begin{equation*}
c_{a, b}:=c_{a, b}\left(\pi_{n}\right)=\left|\left\{\mathcal{C}(i, j): \Delta D_{n+1}(i, j)=a, \Delta D_{n+1}^{\prime}(i, j)=b\right\}\right| \tag{1}
\end{equation*}
$$

Theorem (BBFR '24)

Every permutation π_{n}, out of its $(n+1)^{2}$ cells, has exactly

$$
\begin{aligned}
& c_{1,1}=\left(n-D_{n}\right)\left(n-D_{n}^{\prime}\right)+n \\
& c_{1,0}=\left(n-D_{n}\right)\left(D_{n}^{\prime}+1\right)-n \\
& c_{0,1}=\left(D_{n}+1\right)\left(n-D_{n}^{\prime}\right)-n \\
& c_{0,0}=\left(D_{n}+1\right)\left(D_{n}^{\prime}+1\right)+n
\end{aligned}
$$

We define the fiber of height ℓ the set $\mathcal{F}(\ell)=\cup_{i=1}^{n+1} C(i, \ell)$.

Lemma (BBFR '24)

For each $\ell \in\{1,2, \ldots, n+1\}$ the fiber $\mathcal{F}(\ell)$ has exactly

$$
\begin{aligned}
& \left|\left\{i: \Delta D_{n+1}(i, \ell)=1\right\}\right|=n-D_{n} \quad \text { and } \\
& \left|\left\{i: \Delta D_{n+1}(i, \ell)=0\right\}\right|=D_{n}+1
\end{aligned}
$$

Sketch of proof :

Figure: We color yellow the cells to the "up-left" of each point and blue the cells to the "low-right" of each point.

Properties:

(1) Each point induces one yellow or a blue cell for each fiber.

Sketch of proof :

Figure: We color yellow the cells to the "up-left" of each point and blue the cells to the "low-right" of each point.

Properties:

(1) Each point induces one yellow or a blue cell for each fiber.
(3) Reading vertical fibers there are four cases to have increment +1 :

Left) if yellow
Right) if blue
Interior) two cases depending if there is descent on π_{n} :
Ascent) if exclusively yellow or blue.
Descent) if yellow and blue.

$$
Y(1, \ell)+B(n+1, \ell)+\sum_{\substack{i \in\{1,2), n\} \\ \pi_{n}(i-1)<\pi_{n}(i)}}(Y(i, \ell)+B(i, \ell))+\sum_{\substack{i\{\{1, i), n\} \\ \pi_{n}(i-1)>\pi_{n}(i)}}(Y(i, \ell)+B(i, \ell)-1)
$$

$$
=\sum_{i=1}^{n}(Y(i, \ell)+B(i+1, \ell))-D_{n}
$$

$$
=n-D_{n},
$$

Corollary (BBFR '24)

For every π_{n}, out of the $(n+1)^{2}$ cells, there are exactly $(n+1)\left(n-D_{n}\right)$ with increment +1 .

Sketch of proof of the Theorem

Claim: It is enough to prove that $c_{1,1}=\left(n-D_{n}\right)\left(n-D_{n}^{\prime}\right)+n$. Proof of claim: We recover $c_{0,0}$ from $c_{1,1}$.
From π_{n} we construct $\bar{\pi}_{n}(i)=n-\pi_{n}(i)$.
This exchanges descents with ascents for π_{n} and π_{n}^{-1}.
Ascents + Descents $=n-1$.

$$
c_{0,0}\left(\pi_{n}\right)=c_{1,1}\left(\bar{\pi}_{n}\right)=\left(D_{n}+1\right)\left(D_{n}^{\prime}+1\right)+n .
$$

For $c_{1,0}$ from $c_{1,1}$, thanks to the previous Corollary one has that

$$
c_{1,0}+c_{1,1}=\left(n-D_{n}\right)(n+1) \quad \Longrightarrow \quad c_{1,0}=\left(n-D_{n}\right)\left(D_{n}^{\prime}+1\right)-n .
$$

Similarly for $c_{0,1}$.

Proof for $c_{1,1}$: Induction.
$n=1$ identity, easy to check.
Inductive step : we consider π_{n+1} a permutation of size $n+1$ and we induce a permutation π_{n} of size n as follows

Figure: Permutation $\pi_{n}=(213)$ (to the right) induced for $n+1=4$ from $\pi_{n+1}=(2143)$ (to the left) when taking out $\pi_{n+1}(n+1)=3$. We keep track of the increment behavior of the red cell during the induction.
The increments in the gray region remain invariant!

Depending on the behavior of $\left(\Delta D_{n+1}\left(C^{*}\right), \Delta D_{n+1}^{\prime}\left(C^{*}\right)\right)$ we have four cases.
We illustrate with one case : if it is equal to $(0,1)$, we have

Figure: The blue cells are cells with $\Delta D_{n+1}=1$ and the red cells are cells with $\Delta D_{n+1}^{\prime}=1$.

To conclude we apply to the fiber of π_{n}^{-1} the previous Lemma, i.e. rightmost fiber in the left image, has

$$
\left|\left\{\mathcal{C}(n+1, j): \Delta D_{n+1}^{\prime}(n+1, j)=1\right\}\right|=n-D_{n}^{\prime}
$$

